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Motivation
Question

How to assess the responsibility of data items when
they are both uncertain and involved in a complex
task?

Practical motivation
• Shapley-Like scores (Shapley, Banzhaf,
etc.) [Laruelle, 1999]: reasonable ways to quantify
the responsibility of a data item for a complex
task such as query evaluation

• Real data: marred with uncertainty, which may
be represented by probability distributions

Theoretical motivation
The tractability landscapes of Shapley value
computation and probabilistic query evaluation are
similar – How does the Shapley value computation
landscape change when the database is probabilistic?
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Shapley-like scores

• V : finite set of Boolean variables

• φ : 2V → {0, 1} Boolean function over V

• c : N × N → Q: coefficient function (assumed to have PTIME
evaluation when input in unary)

Scorec(φ,V , x)
def
=

∑
E⊆V \{x}

c(|V |, |E |)×
[
φ(E ∪ {x})− φ(E )

]
.

Example

• cShapley(k , ℓ)
def
= ℓ!(k−l−1)!

k! =
(k−1

l

)−1
k−1: Shapley value

[Shapley et al., 1953]

• cBanzhaf(k , ℓ)
def
= 1: Banzhaf value [Banzhaf III, 1964]

• cPB(k, ℓ)
def
= 2−k+1: Penrose–Banzhaf power [Kirsch and

Langner, 2010]
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Boolean functions with uncertain variables

• Product distribution on Boolean variables, Pr(x) ∈ [0, 1] for
x ∈ V (i.e., every Boolean variable is assumed to be
independent)

• For Z ⊆ V ,

Pr(Z )
def
=

(∏
x∈Z Pr(x)

)
×
(∏

x∈V \Z (1− Pr(x))

)
• Pr(φ)

def
=

∑
Z⊆V Pr(Z )φ(Z ): the probability of the Boolean

function φ to be true, aka, the expected value of the Boolean
function

• EScorec(φ, x)
def
=

∑
Z⊆V
x∈Z

(Pr(Z )× Scorec(φ,Z , x)) the

expected score of x for φ
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Problems studied

We consider classes of representations of Boolean functions, e.g.,
Boolean circuits, d-D circuits. We assume φ(∅) to be computable
in PTIME.

• EV(F) : φ ∈ F 7→ Pr(φ)

• Scorec(F) : (φ ∈ F , x ∈ V ) 7→ Scorec(φ,V , x) for some
coefficient function c

• EScorec(F) : (φ ∈ F , x ∈ V ) 7→ EScorec(φ, x)

We look for the complexity of these problems and for (Turing)
polynomial-time reductions between problems, denoted A ⩽P B,
for class of Boolean functions (and A ≡P B for two-way
reductions).
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d-D circuits
• Determinism: An ∨-gate g is deterministic if the Boolean
functions captured by each pair of distinct input gates of g
have pairwise disjoint models. A Boolean circuit C is
deterministic if all the ∨-gates in C are deterministic.

• Decomposability: An ∧-gate g is decomposable if for pair of
input gates g1 and g2, we have Vars(g1) ∩Vars(g2) = ∅. A
Boolean circuit C is decomposable if all the ∧-gates in C are
decomposable.

CDNF = (A ∧ a) ∨ (C ∧ c)

∧

A a

∧

C c

∨

Cd-D = ¬ [¬ (A ∧ a) ∧ ¬ (C ∧ c)]

DNF d-D

¬

⋀

¬ ¬

⋀ ⋀

A a C cA a C c



6/14

Introduction Theoretical Results Experimental Results Conclusion

d-D circuits
• Determinism: An ∨-gate g is deterministic if the Boolean
functions captured by each pair of distinct input gates of g
have pairwise disjoint models. A Boolean circuit C is
deterministic if all the ∨-gates in C are deterministic.

• Decomposability: An ∧-gate g is decomposable if for pair of
input gates g1 and g2, we have Vars(g1) ∩Vars(g2) = ∅. A
Boolean circuit C is decomposable if all the ∧-gates in C are
decomposable.

CDNF = (A ∧ a) ∨ (C ∧ c)

∧

A a

∧

C c

∨

Cd-D = ¬ [¬ (A ∧ a) ∧ ¬ (C ∧ c)]

DNF d-D

¬

⋀

¬ ¬

⋀ ⋀

A a C cA a C c



6/14

Introduction Theoretical Results Experimental Results Conclusion

d-D circuits
• Determinism: An ∨-gate g is deterministic if the Boolean
functions captured by each pair of distinct input gates of g
have pairwise disjoint models. A Boolean circuit C is
deterministic if all the ∨-gates in C are deterministic.

• Decomposability: An ∧-gate g is decomposable if for pair of
input gates g1 and g2, we have Vars(g1) ∩Vars(g2) = ∅. A
Boolean circuit C is decomposable if all the ∧-gates in C are
decomposable.

CDNF = (A ∧ a) ∨ (C ∧ c)

∧

A a

∧

C c

∨

Cd-D = ¬ [¬ (A ∧ a) ∧ ¬ (C ∧ c)]

DNF d-D

¬

⋀

¬ ¬

⋀ ⋀

A a C cA a C c



7/14

Introduction Theoretical Results Experimental Results Conclusion

Expected Shapley-like scores
Area

ID Region Area Prob. Prov.

01 Valparaiso 16,000 0.4 A
02 Atacama 75,000 0.3 B
03 Metropolitan 15,000 0.6 C
04 Maule 30,000 0.8 D

Density

ID Pop den Prob. Prov.

01 110 0.5 a
02 4 0.2 b
03 461 0.8 c
04 34 0.9 d

SELECT DISTINCT 1 FROM Area a JOIN Density d ON a.ID = d.ID

WHERE Area < 20000 AND Pop_den >= 100

Provenance: φex = (A ∧ a) ∨ (C ∧ c)

Pr(φex) = 1−(1−pA×pa)×(1−pC×pc) = 1−(1−0.4×0.5)×(1−0.6×0.8) = 0.584

x ∈ V px ScorecShapley(φex,V , x) EScorecShapley(φex, x)

A 0.4 0.25 0.076
a 0.5 0.25 0.076
C 0.6 0.25 0.216
c 0.8 0.25 0.216

1.0 0.584
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What is known?

• ScorecShapley(d-D) is PTIME [Deutch et al., 2022]

• ScorecBanzhaf (d-D) is PTIME [Abramovich et al., 2023]

• Scorec(F) ⩽P EScorec(F) for any F , c : just compute
EScorec with all probabilities set to 1

• ScorecShapley(F) ≡P EV(F) for any class F closed under
∨-substitutions [Kara et al., 2024] and when probabilities are
uniform (unweighted model counting)
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What have we shown?

Theorem
• EScorec(F) ⩽P EV(F) for any F , c

• EScorecShapley(F) ≡P EV(F) for any F
• EScorecBanzhaf (F) ≡P EV(F) for any F closed under
conditioning and also closed under either conjunctions or
disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

The tractability landscape of EScorecShapley (and EScorecBanzhaf under
a mild condition) is exactly the same as that of EV
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Exact algorithms

In the case where we have a d-D C , possible to design specific
algorithms (extending those of [Deutch et al., 2022, Abramovich et al.,

2023]) for EScorec with complexity (ignoring arithmetic costs):

• O
(
|C | × |V |5 + Tc(|V |)× |V |2

)
where Tc(α) is the cost of

computing the coefficient function on inputs ⩽ α

• O
(
|V |2 × (|C ||V |+ |V |2 + Tc(|V |))

)
when all probabilities

are identical

• O(|C | × |V |) for cBanzhaf
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Application to probabilistic databases
• TID database, Boolean query q in some query language

• Define Scorec , EScorec of a tuple for a query as Scorec ,
EScorec of the Boolean provenance of the query over the
database

• We compare to PQE (Probabilistic Query Evaluation, i.e.,
computing the probability of a Boolean query)

Theorem
• EScorec(q) ⩽P PQE(q) for any c , query q (whatever the
query language!)

• EScorecShapley ≡P PQE(q) for any query q (whatever the query
language!)

We inherit all tractability and intractability results for PQE, e.g.,
dichotomy for UCQs [Dalvi and Suciu, 2013] or queries closed under
homomorphisms [Amarilli, 2023]
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Set-up

• Implementation of all algorithms within ProvSQL

• Same experimental set-up as in [Deutch et al., 2022]: 1 GB
TPC-H database, 8 TPC-H queries with some adaptations
(e.g., removing aggregates), computation of Shapley/Banzhaf
scores for all input tuples

• Non-Boolean queries: computation for every output tuple

• Proof-of-feasibility rather than in-depth experiments
• Compilation to d-D:

• Check whether Boolean circuit is already an independent
circuit

• Otherwise, try to find a low-treewidth decomposition of the
circuit, and use it to build a d-D

• Otherwise, use an external knowledge compiler (but never
required)
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Results

# Output Provenance Compilation Shapley time (s) Banzhaf time (s)
tuples time (s) time (s) Determ. Expect.

11620 2.125 1.226 0.762 1.758 0.467
5 1.117 0.044 0.766 40.910 0.191
4 1.215 0.017 0.269 9.381 0.085

1783 1.229 0.018 0.023 0.037 0.015
61 0.174 0.001 0.001 0.002 0.001

466 0.247 0.084 0.159 0.455 0.094
91159 2.711 0.749 0.655 1.008 0.489

56 1.223 0.000 0.000 0.000 0.000

Very encouraging! Shapley value computation does not have such
a huge overhead!
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Main message

• Expected Shapley value computation is not (much) more
costly than probabilistic query evaluation

• Landscape seems clearer than for deterministic Shapley value
computation

• PQE (and Expected Shapley value computation) is quite
feasible in practice, even on large datasets

• Connection to SHAP-score [Van den Broeck et al., 2022] is not
quite clear (there is also a probability distribution, but not
used in the same way)

• What are feasible approximations?
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Link to ProvSQL: ProvSQL

Queries used: Link to queries used

https://github.com/PierreSenellart/provsql
https://github.com/pratik2358/pods_24_code/tree/main/experiments/all_queries
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