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What do we consider?
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We consider voting!

2 4  7  9

We resort to ‘4’ in a democratic way!
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Humans and Machine Learning Models
Knowledge 

Source Data

Decisions

The quality of decisions depends on:
1. Quality of knowledge (data)
2. Capability of learning (model capacity and complexity)
3. Ways (algorithms) of learning
etc.
And also on the problem to solve.

Human Machine Learning 
Model
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ML Models can vote too (like us)!

Source 1 Source 2

Source 3
Source 4

Source 5

Source 6

Source 7

Source 8

Data 1

Data 2 Data 3

Data 3

Now, like people, these models give us bunch of decisions for 
every question asked!
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But can all of them recognize digits equally well?

Should we consider simple vote counts in this case?

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5 Voter 6
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
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Should we consider simple vote counts?

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5 Voter 6
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
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More importantly, how do we quantify ‘digit recognition ability’?
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 2  4   7    9

Weighted voting is the way out!

Voter 1 Voter 2 Voter 3 Voter 4
Model 1 Model 2 Model 3 Model 4
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These digit recognition abilities are now called weights (w)
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w1 ✕

w2 ✕

w3 ✕

w4 ✕
We resort to ‘9’ as the answer.
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Why voting power for ensembles?

• Ensemble methods: commonly used way to aggregate the
predictions of different machine learning models (e.g.,
classifiers)

• Ensembles often use equal weights – may treat weak and
strong models equally.

• Assigning different voting power can improve aggregate
accuracy.

• We explore supervised and unsupervised methods to discover
voting power.
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Contributions

• Propose and evaluate multiple voting-power discovery methods
(incl. two original proposals: Shapley for voting power and
inverse-entropy).

• Compare supervised (Accuracy, Regression, Shapley, LOO) and
unsupervised (CRH truth discovery, Inverse Entropy)
approaches.

• Empirical evaluation across MNIST, CINIC-10, URL
classification (DMOZ), Phishing datasets; study accuracy vs.
running time.
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Voting mechanisms

Plurality (weighted): winner = argmaxk
∑

i wi1Mi (q)=k

Borda (weighted): winner = argmaxk
∑

i wi (M⃗i (q))k

• Plurality uses hard labels; Borda uses soft scores (vectors).
• Choice of mechanism affects which prediction format you need.
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Supervised methods (require labeled validation set F)

Accuracy wi =
1
|F|

∑
q∈F 1Mi (q)=γ(q).

Regression Solve minw Eq∈F∥w × M(q)− γ(q)∥2
2.

Shapley values Attribution of contribution to ensemble accuracy
(exponential cost).

Leave-One-Out (LOO) w̃i = v({1..n})− v({1..n} \ {i}) (practical
proxy).
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Unsupervised methods (no ground-truth labels)

Inverse Entropy wi =
|F|∑

q∈F H(M⃗i (q))
– models with lower mean

entropy get higher weight.
CRH Truth Discovery Iteratively estimate truths yq and weights wi

by minimizing
∑

i wi
∑

q 1yq ̸=Mi (q) with a
normalization constraint.
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Datasets and model variations

• Datasets: MNIST, CINIC-10, DMOZ (URL classification),
Webpage Phishing.

• Create ensembles of models with different quality by: Label
flipping and Class imbalance.

• Validation set = F (used to compute weights). Test set for
final evaluation.

• Repeated runs for statistical significance (MNIST: 75 runs;
others: 20 runs).



Motivation Contributions Background Power discovery Setup Results Robustness Conclusion

Implementation details

• Classifiers: logistic regression (MNIST), CNN/VGG16
(CINIC-10), MNB (DMOZ), 3-layer NN (Phishing).

• Regression solved with gradient descent; Shapley computed
where feasible (small n); LOO used as approximation.

• Measure: test accuracy and runtime for weight computation
(log-scale).
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MNIST – up to 16 / 200 models (Borda and Plurality)

Equal Power Inv. Entropy CRH Acc LOO Shap Regression
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Performance of the power-assigning methods in Borda (left) and
Plurality (right) settings for up to 16 models (top) and up to 200

models (bottom).
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MNIST – boxplot (method comparison)

Equal Power Inv. Entropy CRH Acc LOO Shap Regression
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Borda voting with different voting power assigning methods.
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URL Classification (DMOZ) results

Equal Power Inv. Entropy CRH Acc LOO Shap Regression
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Performance of the power-assigning methods in Borda (left) and
Plurality (right) settings for label-flipping noise (DMOZ data)
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Time comparison for weight computation (MNIST)
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Time comparison of the power-assigning methods. The y-axis uses
a logarithmic time scale.
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Failure modes: inverse entropy vs CRH
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Comparison of the effect of label-interchange in training data on
inverse entropy weights (left) and CRH weights (right) (MNIST

data)
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Failure modes: inverse entropy vs CRH
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Correlation between model accuracy and model voting powers
computed using inverse entropy and CRH when the complete label
interchange pattern is random (left) or deterministic (right) across
different training datasets (MNIST data)
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Key takeaways

• Learning weights (regression, Shapley) generally outperforms
equal voting.

• Shapley is strong but costly; regression is a practical top
performer.

• Unsupervised CRH is competitive and more robust than
inverse entropy in some failure modes.

• Choice of voting mechanism (Borda vs Plurality) has limited
effect compared to weight discovery choice.
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Conclusion & Future Work

• Power-assigned voting improves ensembles; regression and
Shapley are top supervised methods.

• CRH offers a good unsupervised alternative; inverse entropy is
cheap but brittle.

• Future: apply in privacy-preserving knowledge transfer
(PATE-like setups), analyze sensitivity and noise addition.
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Questions?

Thank you!
Questions welcome.

Contact: pratik.karmakar@u.nus.edu
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